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Abstract. Forecasting how climate change will impact biological systems represents a
grand challenge for biologists. However, climate change biology lacks an effective framework
for anticipating and resolving uncertainty. Here, we introduce the concept of climate change
wildcards: biological or bioclimatic processes with a high degree of uncertainty and a large
impact on our ability to address the biotic consequences of climate change. Wildcards may
occur at multiple points in the progression of research—from understanding, to predicting, to
forecasting biological responses. Our understanding of biological responses is limited by the
components and processes we exclude to make research tractable. Our ability to predict biolog-
ical responses often requires integration between biological levels of organization, across
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multiple stressors, and from specific cases to general systems. However, these types of integra-
tion can be dramatically affected by, respectively, differences between biological levels in their
critical points, nonadditivity of the effects of different stressors, and historical and geographic
contingency. Finally, our ability to forecast biological responses to climate change requires
incorporating climatic projections in bioclimatic models. Such forecasts are vulnerable to the
compounding of biological and climatic uncertainty, especially when biological responses
occur in novel areas of bioclimatic parameter space. Both biological responses and climate
change are dynamic processes; the potential of biological systems to be buffered against or res-
cued from the effects of climate change depends on the relative timing of biological and cli-
matic effects—one of the least predictable aspects of both systems. In sum, our framework
identifies stress points in the research process where we should anticipate and forestall wild-
cards. Focusing on universal currencies, like energy and elements, and universal structures, like
functional traits and ecological networks, will improve our ability to generalize results. Most
importantly, by modeling and communicating uncertainty, climate change biology can identify
critical foci for future research.

Key words: contingency; ecological surprise; forecast; insurance; multiple stressor; prediction; rescue;
uncertainty.

INTRODUCTION

Predicting how the abundance, distribution, and diver-
sity of life on Earth will respond to rapidly changing cli-
matic conditions represents one of the greatest
challenges for biologists today. There is an urgency to
this challenge, given that forecasting the biotic impacts
of climate change is essential to developing mitigation
measures. However, a forecast is only as useful as it is
accurate, and climate change biology lacks a coherent
framework to identify the most important uncertainties
in forecasting. Here we argue that, irrespective of the
level of biological organization, there may be universal
features of biological systems (or our approach to study-
ing them) that allow us to generalize about the potential
wildcards that affect our ability to forecast biotic
impacts of climate change.
We use the term “wildcards” purposefully here. In a

game of cards, wildcards turn up unexpectedly and infre-
quently, but can result in major shifts in the outcome of
the game. Similarly, the wildcards in climate change biol-
ogy are game-changing processes, unexpectedly counter-
ing the predicted biotic response to climate change. Such
dramatic shifts in outcomes are exemplified by rapid
changes in biological state in response to small climatic
shifts (e.g., from a vegetated to a desertified ecosystem),
alterations in the direction of a biological response (e.g.,
from decreases to increases in population size), and
shifts in critical states (e.g., from sublethal to lethal
effects on organisms). Excellent examples of wildcards
are “black swan events” (Anderson et al. 2017) and “eco-
logical surprises” (Doak et al. 2008). Black swan events
have been defined, in an ecological context, as observed,
inherently unpredictable events with profound biological
consequences (e.g., extreme winters leading to popula-
tion crashes). Ecological surprises are outcomes that are
not predicted from previous results or theory, and this
term has particularly been applied to nonadditive effects
of multiple stressors on communities and ecosystems
(Cote et al. 2016). The concept of climate-change

wildcards extends these ideas to any biological level from
an organism to an ecosystem, encompasses both events
and processes, and explicitly invokes the dual conditions
of high uncertainty and high impact on outcome.
There is an ongoing debate about how predictable bio-

logical systems are, ranging from optimism that process-
based models of individuals or genes can be scaled to
higher levels (Evans et al. 2013) to pessimism that only
weak phenomenon-based models are possible (Beckage
et al. 2011, Schindler and Hilborn 2015). Low pre-
dictability in biological systems may result from inherent
stochasticity in the system, uncertainty in the correct
model specification (epistemic uncertainty), or limita-
tions to modeling an entire system from component
properties (computational irreducibility). Such debates
about predictability are occurring simultaneously in cel-
lular physiology (Samoilov et al. 2006), population biol-
ogy (Crone et al. 2013, Anderson et al. 2017),
community ecology (Clark 2009, Vellend et al. 2014),
evolutionary biology (Lenormand et al. 2009) and
ecosystem modeling (DeFries and Nagendra 2017).
However, these debates often occur in parallel, with little
attempt to integrate our approaches to uncertainty
across these subject areas.
Many other scientific disciplines, such as seismology

and tropical meteorology, grapple with modeling com-
plex systems. Yet, unlike biology, these other disci-
plines have developed ways to express uncertainty in
forecasts—for example, odds of an earthquake of a
certain magnitude within a certain time frame, proba-
bilistic maps of possible tropical cyclone landfall—in
terms that the public can understand and that policy
makers can use to develop risk reduction strategies
(Gerstenberger et al. 2020). These disciplines have
been able to deal with uncertainty effectively through
model-building strategies that allow for the propaga-
tion of errors but at the same time permit the
improvement of models through continual reconcile-
ment of model outputs and observations (Schorlem-
mer et al. 2018, Gerstenberger et al. 2020).
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Such model building begins with the construction of
candidate mechanistic model(s) that incorporate current
observations, followed by verification of this under-
standing through cross validation and experimentation
to test assumptions, leading to model selection and
refinement (Medlyn et al. 2015, Gerstenberger et al.
2020). The verified model may be used to predict
responses beyond the original data set, such as other
locations or previous time points, and comparisons of
predicted and observed responses allow further improve-
ment of the model. This validated model can then be
used to forecast future responses, and monitoring of
these ongoing responses allows for adaptive improve-
ments to the forecasts (Schorlemmer et al. 2018).
How does such an understanding—predicting—fore-

casting framework apply to climate change biology? The
“understanding” domain of climate change biology
focuses on mechanisms, and so asks questions about
which processes are most important in determining how
(and if) the abiotic environment affects a biological sys-
tem. In this domain, there is no attempt to apply this
understanding to other systems or locations or through

time. Understanding is a valuable objective in itself, and
much of climate change biology is currently within this
domain. However, if we wish to apply this understanding
more broadly, then we must move to the domain of “pre-
dicting.” In climate change biology, we often want to
apply our understanding of how a driver affects one level
of biological organization to another level (e.g., use
individual-level thermal tolerances to predict
population-level responses to temperature). Another
common goal is to develop models and theories that are
generally applicable, rather than context-dependent, so
that we can apply our understanding to predict the
responses of other systems or geographic locations. We
can visually represent these two types of prediction as
two different axes (organization, context) extending
from understanding (Fig. 1). When we predict the
future, time is the relevant axis and this special case of
prediction is commonly known as “forecasting.” Fore-
casting is inherently different from other types of predic-
tion because the state of the system at any point depends
not just on the exogenous drivers, but also the previous
state of the system. In climate change biology, forecast-
ing is particularly challenging because the climate itself
is changing dynamically through time with feedbacks
between the biotic and climatic dynamics. In our frame-
work, we therefore consider it the final destination of
research.
We argue here that widespread adoption of such a

framework for understanding, predicting, and forecast-
ing biotic responses to climate change could be an effec-
tive way to tackle uncertainty. We will show that there
are particular points in this research framework where
wildcards are likely to be identified, including when
research transitions from one domain of inference to
another and when the timing of a biological response is
critical to the projected outcome (Fig. 2). Intensive
research focused on these stress points may help increase
the predictability of the system in terms of application to
different contexts, organizational levels, and forecasting
through time. Our cross-disciplinary synthesis of wild-
cards in climate change biology has the aim of focusing
future research to both reduce and better communicate
uncertainties in biological forecasts.

WILDCARDS IN DEVELOPING UNDERSTANDING FROM

BIOLOGICAL DATA (TYPE AWILDCARDS)

To forecast biotic responses to climate change we must
first understand how biological systems respond to cli-
matic stressors (Fig. 2). Even at this fundamental “un-
derstanding” stage several wildcards may originate,
often associated with the inherent difficulty in isolating
mechanisms without removing important biological
complexity (Table 1, in Fig. 2A). Characterizing com-
plex interactions is an active field of research across all
levels of biological organization (Ferri�ere and Fox 1995,
Bashan et al. 2012, Komatsu et al. 2019) and so these
wildcards are likely the most familiar to the reader.

FIG. 1. Most studies are done in the specific, simple, and
short-term domain represented by the orange sphere at lower
left (e.g., experimental warming establishes that predation rates
of a sea star are sensitive to temperature). Studies conducted in
this parameter space build “understanding” of the system, but
are already vulnerable to Type A wildcards (Table 1); for exam-
ple, the observed response of the sea stars may have been influ-
enced by a prior infection. The two blue arrows represent use of
this understanding to predict system response at higher levels of
biological integration (e.g., using individual-level thermal toler-
ances of sea stars to predict population-level responses) or more
general contexts (e.g., predicting effects of warming in other
intertidal sites, or in different systems with other invertebrate
predators). These “prediction” trajectories may encounter wild-
cards B1 and B2, respectively (Table 2). The green arrow repre-
sents “forecasting,” the special case of prediction over time
when new type C wildcards (Table 3) related to the joint appli-
cation of biological and climatic models become important
(e.g., will evolution of higher thermal tolerances in sea stars
keep pace with the warming of the intertidal?).
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Thus, rather than an exhaustive review, we provide here
a brief summary of three common types of Type A wild-
cards to situate the remainder of our conceptual frame-
work.

Undetected processes and components (A1 wildcards)

To understand mechanisms, researchers often sim-
plify systems, examining, for example, just one life stage
(Byrne 2011) or one population (Sinclair et al. 2012), or

focusing on just one potential process. However, this
can mean overlooking key components or processes
that may drive the system’s response. For example,
studies of predator–prey interactions have often
ignored the role that chemical cues play in both preda-
tors locating prey and prey evading predators. This
delayed discovery of important ways that climate
change can disrupt the effects of predators on prey—
such as high CO2 reducing the ability of sharks to smell
their prey (Dixson et al. 2015) or drought altering how

FIG. 2. Forecasting the biotic effects of climate change requires first constructing and verifying specific mechanistic models of
how particular climatic stressors affect a biological level (e.g. gene, organism, population, community, ecosystem). Verification of
such models can be achieved statistically (cross validation) or methodologically (replication of experiments). This understanding of
the system can be used to predict situations beyond the data used initially in formulating the model. Validation of these predictions
requires new data, and may result in iterative improvements in model specification, leading to a predictive model. Finally, biological
models must be combined with climate models to project the future performance of the system in a changing climate, with such
forecasts updated by monitoring. In each of these transitions from understanding to prediction to forecasting, there is the potential
for particular wildcards to come into play.
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damselfly odor impacts food webs (Marino et al. 2017).
Often, component interactions are unknowingly
embedded within studies, as exemplified by cryptic par-
asite or viral infections that alter the susceptibility of
organisms to ocean acidification (Chen et al. 2015,
MacLeod and Poulin 2016), or cryptic behaviors fol-
lowing drought that unexpectedly rewire food webs
(Amundrud et al. 2019, described in more detail as
Example 3 of Fig. 1). Initially undetected components
therefore continue to change our understanding of how
climatic processes influence biological systems across
levels of organization.

Interactions between responses (A2 wildcards)

A focus on a single, tractable biological component of
a system (e.g., a species, a habitat) can result in over-
looking complex interdependencies within the system.
For example, studies of the distribution and abundance
of single, focal species traditionally ignored species inter-
actions, but it is increasingly apparent that nonfocal spe-
cies can mediate the effects of climate change (Suttle
et al. 2007, Ockendon et al. 2014). This insight has now
led to advancements in joint species distribution models
(Pollock et al. 2014). Similarly, when lakes are viewed as

TABLE 1. Wildcards in developing understanding from biological data occur at all biological levels, from organisms to ecosystems.

Wildcard type Wildcard subtype Organism Population Community Ecosystem

A1. Undetected
processes and
components

Overlooked
components

Experimental
responses
misleading if a
biased subset of
individuals studied
(e.g., life stage,
population), or
cryptic species
included (Garcia-
Robledo et al. 2016,
Peterman et al.
2016)

Misleading
estimates of
population
dynamics if
critical life
stages or
process not
considered
(Kimball et al.
2010)

Role of parasites and
disease on
community
responses to climate
are understudied
(Brooks and
Hoberg 2007, Rohr
et al. 2011)

Important
components that
require specialized
methods (e.g.,
microbial diversity)
are understudied.
(Graham et al.
2012)

Processes
excluded or
altered by
research
approach

Behavioral and
physiological
responses restricted
by experimental
setting, or difficult
to integrate over
lifetime of organism
(Schulte et al. 2011)

Short-term or
local population
responses
exclude
potential
influences of
dispersal,
selection, drift,
and species
interactions
(Davis et al.
1998)

Small-scale and
short-term
manipulations may
exclude important
processes and
species (Carpenter
1996), or have
misleading
transient dynamics
(Blonder et al.
2017)

Manipulations may
exclude flow of
organisms or
nutrients between
ecosystems, whereas
observations may
miss extreme events.
(Boeck et al. 2015)

A2. Interactions
between
responses

Combinations of
direct and
indirect effects
of climate

Physiological effects
of climate can be
moderated by
species interactions
(Coristine et al.
2014). Analogously,
selection on
individual traits
may be constrained
by selection on
other traits
(Etterson and Shaw
2001)

Direct effects of
climate on focal
species can be
moderated by
indirect effects
on interacting
species
(Ockendon et al.
2014)

The ability of one
community to shift
spatially to track a
changing climate is
affected by
interactions with
adjacent
communities
(Thompson and
Gonzalez 2017)

Direct effect of
climate change on
focal ecosystems
may be moderated
by response of
adjacent ecosystems
that provide
subsidies (Jeppesen
et al. 2009)

A3. Combining
multiple
stressors

Response to
multiple
stressors may be
nonadditive

Physiological
responses to
multiple climate
stressors are often
nonadditive,
potentially because
they cumulatively
push organisms
from their optimal
allocation of energy
(Sokolova 2013)

Population
responses
nonadditive
when
adaptation to
one stressor
affects
adaptation to
another (e.g.,
Souther and
McGraw 2014)

Community
responses
nonadditive when
species traits that
determine
sensitivity to one
stressor correlate
with traits
determining
sensitivity to a
second stressor
(Vinebrooke et al.
2004)

Ecosystem response
nonadditive when
exposure to one
stressor erodes
ecosystem resilience
to another stressor
(Scheffer et al.
2001)

Note: Wildcard types and subtypes refer to categories illustrated in Fig. 2 and described in the text.
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part of a connected “meta-ecosystem,” then climate-
dependent rates of nutrient flow from terrestrial water-
sheds are recognized as key drivers of the effects of cli-
mate change on the aquatic ecosystem (Jeppesen et al.
2009).

Wildcards in combining multiple stressors (A3 wildcards)

Multiple stressors can interact to produce nonadditive
responses. The relative frequency of additive, synergistic
(greater than additive expectation) and antagonistic (less
than additive expectation) responses is debated, as is
how to quantify these effects properly (Cote et al. 2016,
Thompson et al. 2018). Nevertheless, meta-analyses have
found prevalent nonadditive responses to multiple stres-
sors for individual fitness (Darling and Cote 2008, Har-
vey et al. 2013) and ecosystem stocks and fluxes (Wu
et al. 2011, Dieleman et al. 2012), with some indication
that synergism is more common at individual levels com-
pared to antagonism at the community or ecosystem
levels (Crain et al. 2008, Jackson et al. 2016). As natural
systems have experienced covarying change in multiple
climatic variables, as well as other global change stres-
sors (e.g., nitrogen deposition), it may be challenging to
use survey data, even from long-term studies, to isolate
effects of any particular climate variable. But by failing
to build nonadditive effects into models, managing for
one stressor could have a range of unexpected conse-
quences (Brown et al. 2013).

WILDCARDS IN MOVING FROM UNDERSTANDING TO

PREDICTION (TYPE B WILDCARDS)

Understanding a particular system can be a scientific
end goal in itself. However, this understanding cannot
be externally validated unless we use it to predict a
response in a different context, such as a different system
or location. As Douglas (2009) argues, “explanations are
the means that help us think our way through to the next
testable prediction.” Prediction, therefore, is a second
goal in science, but one that brings with it a new class of
wildcards (Table 2, Fig. 2B).

Wildcards in integrating across biological levels of
organization (B1 wildcards)

Biologists study different levels of biological organiza-
tion, often with the expectation that knowledge at one
level of organization will inform responses at other
levels. However, the linking of responses at multiple
levels may be fraught with wildcards.

Biological levels differ in critical points.—Biological
levels can differ in their climate thresholds. A particular
climate shift can have nonlethal and monotonic effects
on organism performance but, by subtly shifting the bal-
ance between birth and death rates, can tip a population
over the threshold from viable (stable or increasing

population) to declining (Kroeker et al. 2017), or from
stable to outbreak dynamics (e.g., insect pests: Estay
et al. 2009). For example, the vital rates (growth, sur-
vival, reproduction) of individual tundra plants each
respond differently to temperature clines. When these
three vital rates are integrated to estimate population
growth rates, though, a new pattern emerges: relative
insensitivity of population growth rates to moderate dif-
ferences in temperature through counterbalancing
effects on vital rates (termed “demographic compensa-
tion”; see Example 2 in Fig. 3 for more details), but
rapid declines in populations at temperature extremes—
potentially leading to sudden shifts in the geographic
range of these plants (Doak and Morris 2010). Such a
breakdown in demographic compensation is already
being seen for a different species—monkeyflowers—be-
cause of recent droughts (Sheth and Angert 2018). The
take-home message here is that responses that seem
smooth and predictable at one level may actually have
dramatic implications for higher-level system stability.

Emergent constraints of higher-level systems.—Biological
systems often have emergent properties, such that the
whole is not equal to the sum of the parts. Such emer-
gent properties can either dissipate or compound the
transmission of climate effects between biological levels.
We consider two examples of emergent constraints, the
first extending from physiology to population growth,
the second extending from pairwise species interactions
to ecological networks.
For the first example, consider the process of extend-

ing an estimate of organismal critical temperature to
predictions of population growth rates. Even if we have
determined the physiological response to temperature
for each life stage of the organism, we still may not be
able to determine the population response if we lack
information on how each life stage affects population
dynamics (van de Pol et al. 2010), how organism beha-
viour can offset thermal stress (Example 4 in Fig. 3; Sch-
effers et al. 2014), or how predator presence can increase
the thermal exposure of species (Harley 2011).
Another example of an emergent constraint arises

when the effects of climate on the stability of pairwise
species interactions are found to be insufficient for pre-
dicting how climate affects the stability of networks of
interacting species. Because of higher-order interactions
in networks, there are emergent stability criteria that
specifically apply to the network as a whole (Levine
et al. 2017); for example, complex networks can often
only persist if most species interactions are weak
(McCann et al. 1998) and if certain species colonize
before others (Fukami 2015). Furthermore, uncertainties
in interaction strengths compound. When species are
coupled in ecological networks of realistic sizes (>25 spe-
cies), correctly determining whether a species will
increase or decrease in response to a perturbation
requires an impossible level of precision for each interac-
tion strength (Novak et al. 2011).
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Wildcards in generalizing from specific systems (B2
wildcards)

Although individual experiments and surveys con-
tribute to our understanding of particular systems, the
diversity of biological systems far outstrips our capacity
for study. Therefore, a necessary goal in climate change
biology is to extract generalities from individual studies.
However, a number of unexpected obstacles can arise
when attempting to apply specific models across differ-
ent contexts. Context dependence arises where the
response of a system depends on the state or identity of
the organism (e.g., variation between corals in bleaching
resistance; Fig. 4 and Box 1), or on the condition of the

environment in terms of time (historical contingency) or
space (geographic contingency).

Historical contingency.—Historical contingency, the
effect of past events on current dynamics, has been cast
as the enemy of generalization in ecology (Lawton
1999). At the organismal level, the response of an indi-
vidual to a climate stressor can be influenced by mater-
nal and epigenetic effects as well as previous exposure
(Putnam and Gates 2015, Vargas et al. 2017). At the
population level, past demographic events such as bot-
tlenecks, introgression history, and selective sweeps will
influence standing genetic variation and potential for
adaptation (Alberto et al. 2013). Phylogenetic history

TABLE 2. Wildcards in moving from understanding to prediction occur at all biological levels, from organisms to ecosystems.

Wildcard type
Wildcard
subtype Organism Population Community Ecosystem

B1.
Integrating
across
biological
levels of
organization

Biological
levels differ
in critical
points

Increased
temperature
increases energy
demands but
decreases energy
production, leading
to threshold effects
on organismal
performance
(Schulte et al. 2011)

Gradual changes in
vital rates in
response to climate
change can lead to
threshold effects on
population
persistence
(Kroeker et al.
2017) or regulation
(Estay et al. 2009)

Gradual changes in
species phenology,
if different between
interacting species,
may lead dramatic
changes in trophic
dynamics (Winder
and Schindler 2004)

Individual
communities may
appear resistant to
climate change, but
a perturbation
could cause the
entire ecosystem to
flip between states
(Sternberg 2001)

Emergent
constraints
of higher-
level systems

Whole organism
physiological
responses to climate
stress are not well
predicted by
enzyme kinetics
because of multiple
controls and
emergent
constraints on
metabolic networks
(Ruoff et al. 2007,
Schulte et al. 2011)

Population responses
to climate may not
be predictable from
organismal
physiology when
vital rates are
instead constrained
by species
interactions (Harley
2011)

Responses of
ecological networks
to climate stress
may not be
predictable from
pairwise species
interactions, due to
intransitive and
higher-order
interactions (Levine
et al. 2017

Ecosystem responses
depend not only on
species responses,
but also effects of
biotic–abiotic
feedbacks on
resilience
(Johnstone et al.
2016)

B2.
Generalizing
from specific
systems

Historical or
geographic
contingency

Prior events in life of
an organism (e.g.,
developmental
plasticity) or its
ancestors
(maternal,
transgenerational
effects) can affect
its response to
climate (Love et al.
2013, Vargas et al.
2017)

Historical
demographic events
(e.g., bottlenecks,
introgression,
selective sweeps)
influence standing
genetic variation
and therefore
adaptive potential
(Pujol and Pannell
2008)

Historical effects of
assembly order
(Clements et al.
2013), past filtering
of the species pool
(Hawkes and Keitt
2015) affect
community
response to climate
change

History of previous
disturbance (Kr€oel-
Dulay et al. 2015)
or successional
states (Johnstone
et al. 2010) affect
ecosystem response
to climate change

Limitations
to inference
associated
with the
grain of
analysis

Climate stressor
effects will differ
between individuals
due to differences in
underlying genes or
traits (Latimer et al.
2011)

Climate stressor
effects will differ
between
populations of the
same species, for
example because of
differences in
underlying age
structure (Coulson
et al. 2001) or
genotypes (Garzon
et al. 2019)

Climate stressor
effects on
communities
depends not only
on interactions
within communities
but also dispersal
between
communities
(Thompson and
Gonzalez 2017)

Climate stressor
effects on
ecosystem depends
on asymmetry in
the sensitivities of
interacting species
(Gilbert et al. 2014)

Note: Wildcard types and subtypes refer to categories illustrated in Fig. 2 and described in the text.
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may also constrain modern adaptation; for example,
photosynthetic innovations that allowed some plant taxa
to thrive during the low atmospheric CO2 of cooling
phases of glacial cycles may now hinder their adaptation
to increasing CO2 concentrations (Becklin et al. 2016).
At the community level, effects of climate change on any
particular community can be strongly influenced by his-
torical processes of speciation and colonization (Thomp-
son and Shurin 2012, Clements et al. 2013), and filtering

and selection by past environmental conditions (Hawkes
and Keitt 2015). Similarly, shifts in ecosystem state or
productivity can depend on antecedent conditions
(Johnstone et al. 2010, Sala et al. 2012, Kr€oel-Dulay
et al. 2015). For example, the legacy effects of drought
or wildfire can determine the effects of future climate-
related disturbance (Kaisermann et al. 2017, Miller and
Safford 2020). Such dependence on historical conditions
can mean that spatial patterns can give misleading

FIG. 3. Wildcard processes cause unexpected and large deviations from the expected biotic effects of climate change (blue arrows).
The dashed 1:1 line represents a world without wildcards, where observed biotic effects of climate change are close to expected effects.
We illustrate the concept of wildcards here with six examples of qualitative deviations between observed and expected responses to real
or simulated climate change. (1) Wildcard C4: timing of buffering processes. It is expected that the reproductive success of the Great Tit
(Parus major) would decline in response to recent warming, as birds cannot rapidly evolve earlier egg hatch times to match the earlier
emergence of caterpillars. In actuality, phenotypic plasticity in United Kingdom populations allowed individuals to change the timing
of breeding in sync with altered resource supplies, allowing for an observed increase in reproductive success. (Charmantier et al. 2008).
(2) Wildcard B1: biological levels differ in critical points. In response to recent warming, populations of cold-adapted plants like Ameri-
can Bistort (Bistorta bistortoides) are expected to contract at southern range edges, given that adult and seed survival is highest at
northern range edges. However, because these effects on survival are counterbalanced by opposite effects on vegetative growth and
fecundity, there is currently no difference in population growth rates (i.e., the net effect of survival, growth, and fecundity) between
northern and southern range edges. (Doak and Morris, 2010). (3) Wildcard A2: interaction between responses. The aquatic larvae of
craneflies (Tipulidae) that live in Costa Rican bromeliads are expected to have reduced survival under drought, based on individual
assays. However, in a complete community, tipulids are observed to have increased survival following drought because they can
become facultative predators at low water levels (Amundrud et al. 2019) (4) Wildcard C4: timing of state transitions. Mountain ash
(Eucalyptus regnans) forests are expected to regrow following drought-induced wildfires in Australia. However, because younger stands
are more fire prone, a positive feedback ensues that favors a transition to wattle (Acacia spp.) forests (Lindenmayer et al. 2011). (5)
Wildcard B2: geographic contingency. Experimental warming is expected to increase the effects of predators on their prey, based on
studies conducted at colder latitudes. However, the opposite effect is observed in experiments conducted at warm latitudes, perhaps
because of a latitudinal shift in the breadth of thermal tolerances (Marino et al. 2018). (6) Wildcard B1: emergent constraints of higher-
level systems. The black-veined white butterfly (Aporia crataegi) is expected to respond to climate warming by shifting upslope, based
on the physiological sensitivity of eggs and larvae to warming. However, such an upslope shift is not observed because its host plants
are restricted to lower elevations (Merrill et al. 2008).
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predictions if extrapolated to temporal patterns without
consideration of legacy effects (Sala et al. 2012).

Geographic contingency.—Climate change is a global
phenomenon, yet the biotic responses to climate change
may be very different in different parts of the world. One
reason for this is that climate projections are themselves
geographically variable (Loarie et al. 2009)—for exam-
ple, precipitation will intensify in some areas and decline
in others—as are the topological and land-use features
that modify the effects of climate (Holmgren et al.
2013). When multiple climate variables are considered,
such geographic variation can become much more com-
plex. In the Sierra Nevada Mountains, increased precipi-
tation has tended to shift the elevation range of bird
species downslope, whereas warming temperatures have
pulled species upslope. The net effect of these forces
depends both on how local topography affects tempera-
ture vs. precipitation, and which climate factors limit
which species (Tingley et al. 2012). Consequently,
although 84% of bird species have shown an elevation
shift over the last century, this shift is evenly divided
between movement downslope and upslope (Tingley
et al. 2012). Change in even a single climatic variable
includes multiple components (e.g., mean and variance).
Amongst ectotherms, midlatitude species show the
strongest response to anticipated changes in the mean
and variance of temperature because of synergistic
effects of these two aspects of temperature on physiolog-
ical responses (Vasseur et al. 2014). Such a mechanism

may help explain why simulated warming increases
predator control of prey at cold, seasonal latitudes but
has the opposite effect at warm, nonseasonal latitudes
(Example 5 in Fig. 3).
Geographic contingency also occurs because the spe-

cies pool differs between sites. Although some sites may
contain taxa resistant to a climate stressor, such taxa
may be missing from other sites if the taxa are dispersal
limited or have been extirpated (e.g., via demographic
drift, environmental filtering, or biotic exclusion). Such
geographic turnover in species can also alter the covari-
ance between functional response traits (i.e., those
determining species response to environment) and func-
tional effect traits (i.e., those determining effects of spe-
cies on the food web and ecosystem). As we show in
our case study on bromeliad food webs (Fig. 5 and
Box 2), this can result in geographic contingency in the
effects of a climate stressor on the functioning of a food
web.

Limitations to inference associated with the biological
grain of analysis.—When biotic response to climate
change is studied at a level that aggregates the responses
of individual components of the system, failure to model
these individual components can result in misleading
predictions of the aggregate response. The “biological
grain” of a model refers to the level of data aggregation
over hierarchical biological units (e.g., cells, individuals,
populations, species, etc.). Although there is always a
trade-off between model complexity and model

FIG. 4. After a heat stress event in Fiji, healthy and bleached Acropora sp. coral were observed in close proximity, pointing to
strong variation in the stress response of coral holobionts. Photo credit: Simon Donner.
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precision, in some cases models may be unexpectedly
sensitive to the biological grain of analysis: a wildcard.
For example, the distribution of a species may be com-
posed of populations that vary genetically in their cli-
mate niches (Sinclair et al. 2012) or show phenotypic
plasticity (Garzon et al. 2019). When distribution mod-
els of a plant species are generated from thermal toler-
ances of individual populations projected on future
climate, the species can be predicted to occur in different
areas than if it is modelled at the species level (Angert
et al. 2011, Garzon et al. 2019). Even when researchers
are able to make short-term predictions of aggregate
responses without considering the underlying compo-
nents, any change in the representation of the compo-
nents can invalidate the prediction. For instance,

changes in the initial age and sex structure of an island
population of sheep can lead to opposing predictions of
the effects of winter weather on population dynamics
(Coulson et al. 2001).

WILDCARDS IN EXTENDING PREDICTIVE MODELS TO

FORECAST BIOCLIMATE DYNAMICS (TYPE C WILDCARDS)

If a suitable model of how a biological system
responds to climate has been created and validated, the
next step is to use the model to project future states of
the system. Such projections require the combination of
two different sets of models, one that projects the
expected climate in the future, and the other that pre-
dicts the biological response to any specific climate

BOX 1. Case study: Coral reefs and global warming (Type C wildcards)

Questions about the fate of coral reefs on a warming planet lie at the heart of most coral reef research today.
Periods of anomalously warm ocean temperatures have led to widespread episodes of coral bleaching, that is,
a loss of color from the reef-building animals due to a breakdown of symbiosis with colourful dinoflagellate
Symbiodinium.
The response of individual coral species to temperature anomalies has been modeled from field data on

coral traits (Kubicek et al. 2019) or genetic variation (Bay et al. 2017), but the results of such models may not
apply beyond the specific coral population from which the data were collected, creating a Type B2 wildcard.
The variance of coral holobiont response (Fig. 4) to heat stress leads to trade-offs between model complexity
and model scalability. In order to make general predictions, it is necessary to coarse-grain the problem by
using universal, taxa-independent thresholds for coral response to temperature combined with the simulated
frequency of bleaching conditions. Such threshold-based models can be applied globally but are limited to
projecting undefined “loss” or “degradation” of coral reefs and the rate of adaptation necessary to avoid such
degradation (Donner et al. 2005). These coral-climate models to date project the majority of the world’s coral
reefs to degrade this century due to frequent bleaching and associated mortality under even moderate emis-
sions scenarios (Donner et al. 2005, Hoegh-Guldberg et al. 2018).
Researchers developing coral-climate models also encounter Type C1 wildcards when attempting to forecast

climate variability accurately as well as characterize the variation in coral and holobiont response to this cli-
mate variability. Because bleaching is a response to ocean temperature extremes, future coral reef projections
are limited by the ability of climate models to capture the frequency, magnitude, and geography of key modes
of variability like the El Ni~no/Southern Oscillation. This uncertainty can be reduced through careful climate
model selection and bias-correcting model output (Logan et al. 2013). Similarly, hydrodynamic modeling can
also be used to capture fine-scale heterogeneity of coral reef thermal experience, like local upwelling or topo-
graphic shading, but requires high-resolution field data and heavy computation even for an individual atoll.
Addressing these types of wildcards requires coral ecologists to partner with climate scientists experienced in
climate model analysis.
Bleaching-related mortality can result in a rapid shift to another ecosystem state, often dominated by algae,

which can be difficult to reverse. This nonlinearity creates Type C2 wildcards. Such phase shifts are expected
to occur as ocean temperatures continue to rise, but depend on the ability of corals and symbionts to adapt.
The potential of adaptation and dispersal to slow such transitions is difficult to model, creating Type C4 wild-
cards. However, broader ecological–evolutionary models (Baskett et al. 2010, Walsworth et al. 2019) have been
able to capture aspects of coral and symbiont population dynamics, potential adaptive mechanisms (e.g., shuf-
fling to more temperature tolerant symbionts; evolution of symbiont thermal tolerance), and larval connectiv-
ity. The caveat is that no model yet captures all these processes, let alone fine-scale hydrodynamics or effect on
fish or other coral-dependent organisms. Because of data and computational limitations, the newer models
simulate a limited number (i.e., 2–3) of theoretical coral species and only one (i.e., macroalgae cover) of the
many alternative reef states noted in reality. These and more advanced approaches are unlikely to change the
dire forecast for the world’s coral reefs in high warming scenarios. However, they may prove more effective at
identifying potential refugia and management strategies than the initial threshold-based models.
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condition. It is at this interface between biology and cli-
mate that a host of new wildcards emerges (Table 3,
Fig. 2C).

Wildcards from compounding biological and climate
uncertainties (C1 wildcards)

Because both biological and climatological models
have uncertainty, these uncertainties can compound,
potentially creating bioclimatic predictions with such
large confidence intervals as to be unhelpful. Unfortu-
nately, the reliability of climate forecasts is lowest at the
small spatial scales relevant to many biological pro-
cesses, such as species interactions, population dynamics,
and local adaptation (Lawler et al. 2010).
Models of future climates forecast changes not only

in mean conditions but also in the variation around
the mean, such that the frequency of climate events
considered extreme by today’s standards will increase,
and new extreme records will continue to be set (Han-
sen et al. 2012). Even when the trajectories of some
community and ecosystem responses to extreme
events are predictable (e.g., from functional traits of
species: Boucek and Rehage 2014), the timing and
rate at which state shifts take place can be highly
unpredictable for two reasons. First, extreme climate
events (e.g., heat waves, windstorms; Smith 2011), or
extreme disturbances triggered by climate (fire, floods,

drought), are highly variable in frequency, intensity,
and duration over space and time, rendering them dif-
ficult to predict even weeks in advance (Steinkamp
and Hickler 2015). Second, extreme events can change
the internal dynamics of biological systems. Extreme
climate conditions can erode the resilience of ecosys-
tems to other perturbations (Scheffer et al. 2001,
Sternberg 2001) including invasions (Jimenez et al.
2011), making successional trajectories less pre-
dictable (Kreyling et al. 2011). As extreme climatic
events are, by definition, rare, the paradoxical situa-
tion exists that potentially the most important empiri-
cal data are the least available—creating prime
conditions for wildcards.

Wildcards from combining biological nonlinearity with
climate variation (C2 wildcards)

Nonlinear responses to climate stressors are common,
characterizing biological responses from the fitness of
individuals (Wingfield et al. 2017) to the stability of
ecosystems (Burkett et al. 2005). Although some of the
best characterized nonlinear responses are the effects of
temperature on metabolic rates such as respiration and
photosynthesis (Angilletta 2009), similar nonlinear
metabolic responses are known for other climate-related
factors, such as soil moisture (Green et al. 2019) and
ocean acidity (Gao et al. 2019).

FIG. 5. In a globally distributed experiment (with bromeliad invertebrates; see Box 2), the response of the community to rainfall
change in multiple countries could be either geographically “contingent” (i.e., changes between sites), “general” (i.e., similar between
sites) or “ns” (nonsignificant). The response of the community in terms of biomass could be determined at the level of taxonomic fami-
lies (different families indicated by numbers), or taxa could be pooled, as exemplified by the curved arrows, into functional groups (dif-
ferent groups indicated by letter codes). Functional groups could be pooled, as indicated by straight arrows, into predator and prey
trophic levels, and the ratio of predator to prey biomass used as a metric of trophic structure. The size of the circles is proportional to
mean biomass per bromeliad for each category of each response. Taxonomic number codes: 1 = Culicidae, 2 = Empididae;
3 = Corethrellidae; 4 = Scirtidae; 5 = Chironomidae; 6 = Limnocytheridae; 7 = Ceratopogonidae; 8 = Tipulidae and Limoniidae;
9 = Coenagrionidae; 10 = largely Naididae in Oligochaeta; 11 = Psychodidae; 12 = Syrphidae; 13 = Tabanidae. Functional group
letter codes: f = filter feeders; sc = scrapers; g = gatherers; sh = shredders; e = engulfing predator; p = piercing predators.
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When a change in the frequency distribution of cli-
mate conditions is combined with nonlinearities in the
biological response to climate, there is potential for rapid
shifts in biological states. For example, organisms cur-
rently living close to their thermal optima are particu-
larly vulnerable to fluctuations in temperature, as their
critical limits will be exceeded more frequently (Rummer
et al. 2014). Similarly, at the ecosystem level, increases in
the variance and temporal autocorrelation of climate
drivers, even when the mean is held constant, can erode
the resilience of ecosystems, resulting in state shifts
(Cueto-Felgueroso et al. 2015, van der Bolt et al. 2018)
—as exemplified by coral bleaching (see Box 1).
Furthermore, when nonlinear biological responses to

climate are combined with variation in climate, organ-
isms can show different integrated performance than
expected based on the mean environment, an example of
Jensen’s inequality (Denny 2017). For example, includ-
ing temperature variation in projections of where mean
temperature increase will have the greatest effect on
ectotherm performance can substantially shift

latitudinal patterns (Vasseur et al. 2014). Organisms also
show nonlinear responses to precipitation-related condi-
tions, as exemplified by plant photosynthesis being
much more sensitive to decreases than increases in soil
moisture relative to mean conditions. This particular
nonlinear relationship, when considered at the ecosys-
tem level, results in between-year variation in precipita-
tion reducing the overall ability of terrestrial biomes to
serve as carbon sinks, again through Jensen’s inequality
(Green et al. 2019).
Although these combinations of biological nonlineari-

ties with climatic variation have the potential to result in
wildcards, there are promising ways forward. First,
although irreducible stochasticity in climate may prevent
us from predicting exactly when a state-changing cli-
matic event will occur, we can be more successful if we
reframe the question as the likelihood of such an event
occurring within a window of time (e.g., threshold-based
models of coral reefs; see Box 1). Second, by under-
standing the conditions under which Jensen’s inequality
can potentially influence bioclimatic model predictions,

BOX 2. Case study: A distributed experiment helps unravel geographic contingency (Wildcard B2)

One of the thorniest wildcards is geographic contingency, where spatial difference in either the organisms or
the abiotic environment prevents generalizing results from one site to other sites. Although comparisons of
different studies conducted at different sites can suggest geographic contingency, it is often difficult to exclude
the potential effect of methodological differences between studies. A more robust method is a distributed
experiment in which a co-ordinated network of researchers uses a common protocol to conduct the same
manipulation at different sites. There have been surprisingly few distributed experiments in climate change
biology, and most have focused largely on the plant community - presumably because of the logistic challenges
in imposing manipulations on an entire food web over multiple sites.
The aquatic food webs in bromeliads offer a useful system for distributed experiments. Water-holding bro-

meliad plants are distributed throughout the Neotropics, from Argentina to Florida, and contain rich commu-
nities of macroinvertebrates (largely insect larvae), protozoa and microorganisms. Members of the Bromeliad
Working Group manipulated the rain entering bromeliads, relative to site-specific ambient conditions, in seven
field sites in South America, Central America, and the Caribbean (Romero et al. 2020, Srivastava et al. 2020).
The response of the macroinvertebrates to the rainfall manipulation can be summarized with varying levels

of aggregation (Fig. 5), starting with the detailed resolution of taxonomic families, which can be aggregated
into functional feeding groups, which can further be summarized as a single metric of predator–prey mass
ratios. Both the generality and strength of responses change with the level of aggregation. Macroinvertebrate
families differed substantially in the strength of their response to rainfall manipulations, with pelagic taxa like
mosquito (Culicidae, taxonomic family = 1 in Fig. 5) larvae amongst the most sensitive. However, only a few
families showed geographically general responses as the effects of rainfall on organisms were mediated by site-
specific hydrological characteristics of bromeliads. In addition, there was strong spatial turnover in family
composition, with as few as 32% of macroinvertebrate families in common between sites, further preventing
the application of results of one site to other sites. Aggregating families by functional feeding group (i.e., func-
tion effect traits) provides a more universal characterization of the functional impact of the macroinvertebrate
community. This does not reduce geographic contingency, however, because the taxonomic families that com-
pose certain feeding groups can still differ between sites and this turnover can drive differences in the hydro-
logic sensitivity (i.e., function response traits) of the entire feeding group (Srivastava et al. 2020). However,
detritivore feeding groups were overall more sensitive than predator feeding groups, so when the data are
aggregated as the ratio of predator to detritivore biomass there was a geographically general response to rain-
fall (Romero et al. 2020). This ratio, commonly called the predator–prey mass ratio, was higher in all sites
when rainfall became more uneven between days. In summary, these results demonstrate that our ability to
generalize from the results of experiments may depend on the ecological response.
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TABLE 3. Wildcards in extending predictive models to forecast bioclimatic dynamics occur at all biological levels, from organisms
to ecosystems.

Wildcard type
Wildcard
subtype Organism Population Community Ecosystem

C1. Compounding
uncertainty from
climate models

Extreme climate
events are
difficult to
forecast yet have
the most impact
on survival
(Vasseur et al.
2014)

Extreme climate
events are difficult to
forecast but have
high impact on
population dynamics
(black swan events:
Anderson et al. 2017)

Extreme climate
events can disrupt
deterministic
community assembly
and permit invasions
(Jimenez et al. 2011,
Kreyling et al. 2011)

Extreme climate
conditions
increase likelihood
of ecosystem
altering via
inherently
unpredictable
disturbances (fire,
floods, drought)

C2. Combining
biological
nonlinearity with
climatic variation

Temperature
variation affects
organism
performance due
to the
nonlinearity in
thermal
performance
curves (Vasseur
et al. 2014),
leading to poor
prediction of
fundamental
niche (Woodin
et al. 2013)

Temperature variation
reduces population
growth due to
nonlinear averaging
of thermal
performance curves
(Bernhardt et al.
2018). Temperature
autocorrelation
combines with
exponential
population growth to
promote population
persistence
(Gonzalez and Holt
2002)

Temperature variation
can combine with
nonlinear responses
of predators to prey
densities to cause
unstable predator–
prey dynamics
(Uszko et al. 2017)

Stochastic
fluctuations of
climate variables
in combination
with nonlinear
responses of
ecosystems (e.g.,
hysteresis), can
result in ecosystem
regime shifts
(Cueto-Felgueroso
et al. 2015)

C3. Novel areas of
climatic or biotic
parameter space

Climate-induced
shifts of
organisms into
novel habitats can
lead to
unexpected
behaviors
(Cannizzo and
Griffen 2016)

Novel climate space
can result in range
loss or expansion
with unknown
capacity for
adaptation (Coristine
and Kerr 2015)

Novel co-occurrences
or abiotic
environments of
species can lead to
difficult-to-predict
community dynamics
(Menendez et al.
2008, van Grunsven
et al. 2010)

Novel ecosystems,
resulting from
climate-induced
extinctions,
invasions or
habitat
modification, may
have difficult-to-
predict properties
(Hobbs et al.
2006)

C4. Timing of
buffering and
rescue processes,
state transitions:

Timing in
state
transitions

Physiological state
transitions reflect
of the breakdown
of homeostatic
mechanisms
(weakening
negative
feedbacks)
combined with
increased
susceptibility to
further stress
(positive
feedback)

Population viability
transitions (Fagan
and Holmes 2006)
reflect the
breakdown of
compensatory,
density-dependent
responses (weakening
negative feedbacks)
combined with
negative genetic and
demographic
consequences of
declining population
sizes (positive
feedbacks)

Community state
transitions occur
when climate change
allows prey to escape
regulation by natural
enemies (weakened
negative feedbacks,
e.g., van Grunsven
et al. 2007), and loss
of particular species
increases the
likelihood of further
species turnover
(Simberloff and Von
Holle 1999, Colwell
et al. 2012)

Ecosystem state
transitions occur
when climate
change erodes
resilience of
ecosystems to
disturbance,
through loss of
resistant traits or a
change in the
abiotic template
(Johnstone et al.
2016) reinforced
by positive
feedbacks between
disturbance and
ecosystem
properties
(Lindenmayer
et al. 2011)

Timing of
buffering
or rescue
processes

Uncertainty in
organismal
responses to
climate due to
uncertain
timeframe for
behavioral
innovations

Population viability or
ranges difficult to
predict because of
uncertain timing of
recue through
evolution or
migration (Dullinger
et al. 2012)

Uncertain timing of
community change
reflects lags in species
loss (extinction
debts), species gain
(immigration
credits), or species
niche shifts
(evolutionary rescue)

Uncertain timing of
ecosystem change
reflects cumulative
and connected lags
in components,
from individuals
to populations to
communities (Essl
et al. 2015)

Note: Wildcard types and subtypes refer to categories illustrated in Fig. 2 and described in the text.
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we can work towards better incorporation of nonlinear
biological responses. For example, when nonlinear bio-
logical functions are based on empirical patterns without
an underlying mechanistic model, projections may be
highly variable between models—as is the case for biocli-
matic models of global productivity that ignore the
biomechanics of how soil water affects plant productiv-
ity (Trugman et al. 2018).

Wildcards from novel areas of climate or biotic parameter
space (C3 wildcards)

Another suite of wildcards arises when biological sys-
tems enter novel areas of parameter space. Models of
long-term climate impacts on biological systems can
only be parameterized for current conditions, or in some
cases past conditions, creating a problem for predicting
biological responses to any future climate conditions (or
associated extreme events) outside these bounds. By the
year 2100, about 4–39% (depending on projected climate
scenario) of the world’s land area will experience a “nov-
el” climate, that is, a climate that does not currently
occur anywhere in the world (Williams et al. 2007, Mah-
ony et al. 2017). Species distribution models based on
current conditions can fail to inform future distributions
in areas with novel climates (Williams and Jackson
2007). Furthermore, if species differ in their spatial
tracking of climate (Freeman and Freeman 2014,
Gibson-Reinemer and Rahel 2015), novel assemblages
of species may occur that have no present-day analog
(Williams and Jackson 2007). Such novel interactions
are a wildcard in that we have no prior experience of
their dynamics (Carrasco et al. 2018). It could be argued
that we may be able to draw some insights from existing
theory for introduced species. For example, novel com-
munities may have some dynamics similar to invaded
communities, including escape from pathogens and par-
asitoids (Menendez et al. 2008, van Grunsven et al.
2010), exploitation of na€ıve host plants (Cudmore et al.
2010), and intensification of competition (Alexander
et al. 2015). However, inferences may be limited because
invasive species have limited or no shared evolutionary
history with native species, unlike near-local species
undergoing range shifts.

Wildcards in dynamic responses to climate change (C4
wildcards)

Time is a critical dimension of forecasting the effects
of climate change. Climate change is an ongoing process
that shows temporal progression, and biological
responses to climate change are themselves dynamic. To
explore dynamic wildcards, we start with the simplifying
assumption that most biological systems, regardless of
biological level, can often be described by transitions
between three states—stasis, altered and rescue—even
though not all of these states may be realized in every
system and some systems may be in non-equilibrium

dynamics between states (e.g., succession). By “stasis,”
we refer to a temporally constant state where negative
feedbacks tend to limit dynamic change (recognizing
that some systems may always be far from equilibria
because of intrinsic chaotic dynamics or externally
imposed stochasticity). Once these negative feedbacks
are overcome, the system may enter a new “altered”
state. However, biotic processes may prevent this altered
state from persisting, moving the system to a “rescued”
state that approximates the original. We argue that wild-
cards are particularly likely to emerge at the transitions
between these three states.

Wildcards in the timing of state transitions.—Biological
systems are often characterized by negative feedbacks
that reduce the impact of stress or disturbance (Thomas
and D’Ari 1990). Examples of such negative feedbacks
include homeostatic regulation of physiological pro-
cesses, density-dependence in population growth,
frequency-dependent mechanisms of selection and spe-
cies coexistence, and reinforcing linkages between vege-
tation and microclimate. However, other biological
systems may already be far from any sort of equilibrium
(Guichard and Gouhier 2014). In particular, anthro-
pogenic stressors apart from climate change have created
a background of flux for many biological systems
(Archer and Stokes 2000).
A change in climate beyond some threshold amount

can erode the negative feedbacks that exist in a system,
or introduce new positive feedbacks, potentially causing
rapid state transitions (Fig. 6). Climate extremes can
push organisms beyond the ability of homeostatic mech-
anisms to regulate body temperature, fluid levels, and
chemical composition, and lead to critical states such as
heat exhaustion and wilting. When climate change
causes populations to contract, the fitness of individuals
can decrease (e.g., through failure to find mates or
inbreeding depression), which further accelerate rates of
population decline, sweeping populations into an “ex-
tinction vortex” (Gilpin and Soul�e 1986). Positive feed-
backs can also occur in terms of species interactions,
leading to co-extinctions, where the extinction of one
species leads to the extinction of interacting species (Col-
well et al. 2012, Schleuning et al. 2016), and invasion
meltdowns, where the invasion of a community by one
species renders the community more susceptible to inva-
sions by other species (Simberloff and Von Holle 1999).
These positive feedbacks can be difficult to anticipate,
because of the potential for species interactions to prop-
agate among multiple links, emerging unexpectedly in
distant locations (Srivastava and Bell 2009, Levine et al.
2017). Positive feedbacks can also ensure state transi-
tions do not reverse. In southeast Australia, drought-
induced fires, in combination with overharvesting, have
shifted Eucalyptus regnans forests from an old-growth
state to a young state. Because young trees burn with
greater severity than older trees, intense fires keep the
forest in a regenerating state, leading to a climate-
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induced positive feedback between young forest age and
fire severity (Example 4 in Fig. 3: Lindenmayer et al.
2011). Similar climate-induced state changes have been
predicted for transitions between tundra and boreal for-
ests (Scheffer et al. 2012) and for coral reefs and benthic
macroalgae (Graham et al. 2015).
Although such transitions between states are well-

documented in biology, the wildcard arises in predicting
the timing of transitions. Timing can be difficult to pre-
dict for two key reasons. First, many processes exhibit
time lags, meaning that a transition threshold has passed
before there is detectable change. Examples of such
time-lag phenomena include nonreproductive but long-
lived organisms in populations (Pigott and Huntley
1981, Janzen 2001), extinction debts in communities
(Dullinger et al. 2012), and functional debts in ecosys-
tems (Isbell et al. 2015), which make it difficult to detect
change in population size, species composition and
ecosystem functions, respectively. For example, many
bioclimatic models have assumed, based on short-term
experiments, that C4 grasslands are not affected by

elevated CO2, but a long-term experiment shows that
effects take over 12 yr to be realized (Reich et al. 2018).
Second, when transition thresholds involve the relative
effects of multiple processes (e.g., direct effects on repro-
duction, indirect effects on predation rates), differential
effects of climate on each process may be challenging to
model (Doak and Morris 2010, Kroeker et al. 2017).

Wildcards in the timing of buffering or rescue pro-
cesses.—Biological systems can be buffered against some
of the consequences of climate change when diversity at
one biological level creates important redundancy that
maintains a higher-level function. Such “insurance
effects” (Fig. 6) allow a system to resist change (Yachi
and Loreau 1999). For example, genetic and species
diversity can help stabilize ecosystem functions such as
primary productivity, as long as genotypes or species
with similar functional roles differ in their climate sensi-
tivities (Thompson and Shurin 2012). In microbial sys-
tems, widespread functional redundancy means that
ecosystem-level metabolic functions remain highly

FIG. 6. Biological systems can show a variety of responses to climate change over time (major panel), reflecting how system per-
formance adjusts to a temporally changing environment (minor panels, time reflected by thick black arrows). The “base prediction”
is a progressive change in state attributes from a current to altered state as negative (�) feedbacks weaken and/or positive (+) feed-
backs strengthen. However, “rescue effects” can allow biological systems to recover by altering (thin blue arrows) the tolerance of
the system to environmental conditions. Alternatively, “insurance effects” can buffer effects of climate change when the responses of
some system components are offset by other components (dashed and dotted green lines).
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consistent even when community membership is highly
variable (Louca et al. 2018). Spatial insurance effects
extend this process to a larger spatial scale, in which the
regional tracking of environmental change by function-
ally redundant species facilitates the maintenance of
community-level biomass and ecosystem productivity
(Loreau et al. 2003, Thompson and Gonzalez 2017). At
the organismal level, phenotypic plasticity can be con-
sidered an insurance effect, permitting an individual to
maintain fitness over a wider range of climate conditions
than permitted by any single phenotype (Becklin et al.
2016). For example, individual flexibility in the timing of
breeding allow some Great Tit (Parus major) popula-
tions to track climate change (Example 1 in Fig. 3;
Charmantier et al. 2008). The wildcard is whether these
buffering processes will be strong enough to prevent a
state transition, especially in the context of multiple
stressors.
If buffering processes are not able to resist change in

the system, then dispersal, evolution, and novel beha-
viours may still be able to “rescue” a system—even after
change has been initiated. Rescue effects (Fig. 6) are an
example of system resilience. Long-distance dispersal
events may be critical in allowing species to track their
climate niche across the world, but are often so rare as
to be unsampled—leading to underestimates of migra-
tion rates in models (Higgins and Richardson 1999).
Like dispersal, evolution has the potential to reverse
population decline by generating or increasing the fre-
quency of resistant genotypes within. Such “evolutionary
rescue” can occur via de novo mutations, selection acting
on standing genetic variation, or gene flow from other
populations (Gonzalez et al. 2013). Because both disper-
sal and evolution involve at least some processes that are
irreducibly stochastic (Cain et al. 2000), predicting
whether rescue will occur under climate change remains
beyond our reach (Carlson et al. 2014). For example, the
unpredictability of evolutionary rescue when adequate
standing variation is lacking is, in large part, because it
is the result of two unlikely phenomena: first, a mutation
that increases fitness must arise, and second, that the
mutation must sweep through the population rather
than be lost to drift while rare (Orr and Unckless 2014).
Even in replicate experimental lab populations, some
populations experience rescue and others do not (Bell
and Gonzalez 2009). A similar argument can be made
for dispersal rescue, which requires not only the propag-
ule with the right genotype to disperse to the right spot,
but for it to survive and reproduce once it gets there.
Thus, evolutionary and dispersal rescue of populations
that would otherwise become extinct are high-impact
events, but because the timing of their occurrence is very
difficult to predict, they are wildcards. Unfortunately,
timing is key, as this determines whether the rescue event
happens before climate change is able to cause irre-
versible alterations of the system (e.g., extinction).
A few caveats follow from this dynamic view of

dynamic responses. First, climate change will result in

biological winners and losers, so we have intentionally
emphasized biotic change rather than change in any par-
ticular direction (although some processes like rescue
may be inherently directional). Second, although we
have laid out phases of stasis, change, and rescue, there
is no expectation that any given biological system will
experience all of these: Some may never approach equi-
librium dynamics, others may simply be insensitive to
climate change, and in others rescue may simply not
happen fast enough before irreversible change has
occurred. Finally, systems will differ in whether transi-
tions between states are gradual or abrupt.

RECOMMENDATIONS FOR FUTURE RESEARCH

Here, we have articulated a research framework for cli-
mate change biology that links understanding to predic-
tion to forecasting, and have identified specific points
along this research arc where wildcards are likely to orig-
inate. Going forward, our four key recommendations to
identifying and resolving wildcards in climate change
biology are as follows.

Begin with integration

An aim of climate change biology is often to integrate
responses from multiple biological levels, such as in the
integration of ecophysiological reaction norms into
ecosystem bioclimatic models. Because we anticipate
wildcards in such vertical integration of responses, we
recommend incorporating a multilevel perspective into
the planning research programs from the start. When
vertical integration occurs early in the research process,
it can help determine which components can be safely
“black boxed,” where a loss in understanding the varia-
tion among individual components is less important
than the gain in forecasting accuracy for the whole sys-
tem. For example, biogeochemical flux rates in a poorly
mixed ocean basin can accurately be predicted based on
stoichiometry and physiochemical conditions, but with-
out knowledge of the microbial community responsible
for these fluxes or reaction kinetics of individual organ-
isms (Louca et al. 2019).
A second recommendation is to facilitate integration

between biological levels by using similar currencies. All
biological life exists within the constraints imposed by
thermodynamics and the conservation of matter. This
suggests that general models based on currencies of
energy and matter may succeed, even if models based on
the specifics of species and allelic identity fail. The meta-
bolic theory of ecology, for instance, uses thermody-
namic principles about energy to predict that modest
warming should increase metabolic rates (Brown et al.
2004), and has been successfully extended to populations
(Bernhardt et al. 2018) and species interactions (O’Con-
nor 2009, Sentis et al. 2015). Similarly, the theory of eco-
logical stoichiometry recognizes that the bodies of
organisms must be reassembled from the elements in
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their resources, and has been effective in extending ele-
mental constraints from cellular metabolism to organis-
mal growth to species interactions (Hessen et al. 2013).
For example, experimental warming results in higher res-
piration in a number of insect herbivores, necessitating
greater carbon intake to meet metabolic requirements
(Rosenblatt and Schmitz 2016). This shift affects herbi-
vore interactions with plants, as herbivores will switch
their diet from protein-rich plants to carbohydrate-rich
plants, as well predator interactions with herbivores, due
to the increase in carbon:nutrient ratios of herbivore
bodies (Rosenblatt and Schmitz 2016).
Another approach to integrating over biological levels

is to find common mechanistic links. Functional traits
determine how species interact with their environment
and each other, and organisms often show similar trade-
offs or covariation between types of traits. Therefore,
models explicitly incorporating functional traits gener-
ally have broader applicability than those based on spe-
cies identities (Lavorel and Garnier 2002, Wallenstein
and Hall 2012). For example, variation in the response
of 50 species of alpine plants to a 2°C increase in mean
growing season temperature is well predicted by just four
functional traits: species that invest in conserving leaf
water and belowground storage responded positively to
the warming trend, whereas other species declined
(Soudzilovskaia et al. 2013). Such trait-based
approaches are also well developed for microbial com-
munities, which show strong functional determinism in
terms of the major metabolic pathways (Louca et al.
2016), but are increasingly applied to other taxa, such as
birds, where grouping species within functional guilds
lends generalizable insight into climate and land-use
change responses (Cormont et al. 2011, Zhang et al.
2016).
Models based on universal currencies (elements,

energy) and mechanisms (functional traits) have the
potential to integrate over multiple biological levels by
including fundamental constraints on living systems,
yet are still mathematically tractable by blackboxing
some of the less influential biological details. For
example, the effect of trophic interactions (individual-
level process) within food webs (community-level
structure) on the carbon cycle (ecosystem-level
response) can be modeled by abstracting the interac-
tions in terms of consumer and resource traits and ele-
mental ratios (Schmitz and Leroux 2020). Key to
using these abstractions is identifying when it is suit-
able to combine similar components into functional
groups or energy channels, and when they should be
kept separate. For example, while ignoring species
identity removes the possibility of applying models to
conservation of individual species, it enables predic-
tion of system-wide functions. Considerable scope
remains to identify and validate new ways of black-
boxing processes or components and to develop best
practices to apply this approach across biological
scales and for specific questions.

Mind the gaps and understand contingencies

We must not only anticipate wildcards, but also detect
them. A critical component of our research framework
is the comparison of model outputs with empirical data
to test and refine each step in the process (“verification,”
“validation,” and “monitoring” in Fig. 2). For example,
the FACE experiment—which examined forest response
to elevated CO2—has been used at the model verification
step to isolate which model assumptions improve the
ability of models to predict empirical results (Medlyn
et al. 2015). An important step in generalizing a model is
validation: the comparison of model predictions under
new conditions (e.g., a new site) with known responses
(Fig. 2). For example, experimental results can also be
compared with observed patterns in intact, natural sys-
tems, to ensure that the mechanisms extend beyond the
simplified conditions of experiments (e.g., Amundrud
and Srivastava, 2019). Failure at the validation step sug-
gests that the model should be revised to include more
context-specific variables or be formulated at a different
biological grain (Douglas 2009).
Wildcards can be identified when observations fail to

match expectations, such as when contingencies arise.
Here we can harness the power of studies replicated
across geographic space (e.g., Box 2), studies that use
historical data or long-term and extensive monitoring
in one location, or meta-analyses of such studies. For
example, geographic variance in the response of Euro-
pean shrublands to simulated climate change can be
explained by disturbance history, pointing to a need to
include anthropogenic disturbance in climate change
biology explicitly (Kr€oel-Dulay et al. 2015). Consider-
able scope remains for determining the prevalence of
contingency using geographical replication of experi-
ments, as most have manipulated climate stressors in
plant communities (Walker et al. 2006, Tielb€orger et al.
2014, Knapp et al. 2017). As our bromeliad case study
demonstrates (Box 2), geographically distributed experi-
ments may be particularly useful in determining which
responses are general over space and why. Shifting the
analysis to trait or energetics-based responses (e.g.,
Fig. 5) can provide a way forward when contingency is
due to differences in species identity and may lead to
the discovery of general patterns (Walker et al. 2006,
Romero et al. 2020). When geographically distributed
experiments are not practical, meta-analysis of individ-
ual studies can be informative. However, we caution
that geographic and taxonomic biases are prevalent in
climate change biology, often resulting in sparse data
for tropical biomes (Marino et al. 2018, Srivastava
et al. 2020) and for animal and microbial communities
(Cavicchioli et al. 2019). Reporting nonsignificant
results or those that may not necessarily fit the prevail-
ing narrative is also critical to generating insights about
why certain processes are important in some systems
but not others, and will improve the accuracy of meta-
analyses.

Xxxxx 2021 WILDCARDS IN CLIMATE CHANGE BIOLOGY Article e01471; page 17

R
E
V
IE
W



Incorporate climate modeling

Climatologists and biologists rarely collaborate; we
need to. To date, both researchers and funding agencies
have been slow to embrace tackling questions in climate
change biology with teams of multidisciplinary research-
ers focused on a specific system. Recent advances in
modeling extreme climate events have been made possi-
ble by improved resolution and better incorporation of
physical processes, but biologists have been slow to
incorporate these predictions in experiments (Thompson
et al. 2013). One potential method is the downscaling of
general circulation models to create multiple replicate
runs of weather scenarios that can be incorporated in
experiments (Thompson et al. 2013). Other methods
involve creating orthogonal gradients of climate mean,
variance, and extremes within experiments (Kreyling
et al. 2014) and model simulations (Rypkema et al.
2019), or characterizing the climate signatures of
extreme years for experimental simulation (Knapp et al.
2015). Related, but equally important, is for biologists to
develop standardized definitions of climate extremes
(e.g., what constitutes a drought; Slette et al. 2019) and
to include these definitions in their research. We suggest
communicating with climatologists to keep these defini-
tions consistent as a way forward.

Reframe and communicate uncertainty

Climate change biology could make headway by for-
malizing sources of uncertainty. One useful categoriza-
tion of uncertainty (Spiegelhalter and Riesch 2011)
separates uncertainty within models (stochastic events,
imprecise parameters, and limited knowledge of model
structure) from uncertainty external to models (indeter-
minacy, unknown limits to knowledge). Climate change
wildcards potentially incorporate all these types of
uncertainty, but once the source of uncertainty is known,
it becomes apparent whether useful progress can be
made by further research or only by better communica-
tion of the range of potential scenarios or relative risks.
Uncertainty is a given in many areas of science, and

climate change biology could learn from other fields that
have carefully considered how to incorporate uncer-
tainty in models, and how to communicate the conse-
quences of this uncertainty to the public. In
meteorology, the accuracy of a weather forecast declines
with time from the present; the forecast horizon defines
how far away a forecast can be made before its level of
inaccuracy becomes unacceptable. It has been suggested
that a similar ecological forecast horizon could be used
for populations and communities (Petchey et al. 2015)
and this idea could be extended further to genes, individ-
uals, and ecosystems. Depending on the desired forecast
horizon, biologists could change the relative weight of
information, for example, emphasizing time series for
shorter forecast horizons and space-for-time approaches
for longer forecast horizons (Adler et al. 2020).

Expressing uncertainty does not give decision makers
license for inaction but instead provides the opportunity
to take a precautionary approach to climate mitigation
strategies.

CONCLUSIONS

There is no escaping the wildcards in climate change
biology. Although we have argued that wildcards may
occur at every step in the scientific process, this does not
mean that it will be impossible to forecast the future
effects of climate change on biological systems. We inten-
tionally used the analogy of wildcards in our framework,
drawing on the popular understanding of wildcards in a
card game as both unpredictable and potentially game
changing. However, unlike players in a game of cards, cli-
mate change biologists do not have the luxury of folding.
Instead, we must develop strategies to deal with the inevi-
table wildcards. Here, we have articulated a research
framework for climate change biology that links under-
standing to predictions to forecasts, and have identified
specific points along this research arc where wildcards are
likely to originate. Our catalogue of wildcard commonali-
ties provides a guide to anticipating wildcards at different
biological levels. By focusing intensive research on these
stress points, climate change biology can reduce uncer-
tainty, anticipate contingencies, and better communicate
the limitations of our knowledge.
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